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2.7a Omission of relevant variables.
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Omission of relevant variables

■ true relationship:

Y = Xβ +u =
[
XI XII

]⎛⎝βI

βII

⎞⎠+u

X =

⎡⎢⎢⎢⎢⎢⎣
1 X11 . . . XK1 ,1

1 X12 . . . XK1 ,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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XK1+1,1 . . . XK1

XK1+1,2 . . . XK2

. . . . . . . . . . . . . . . . . . . . . . . . . .

XK1+1,T . . . XKT

⎤⎥⎥⎥⎥⎥⎦ , β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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βK1
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βK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Y = XIβI +XIIβII +u

■ estimated relationship:

Y = XIβI + v where v = XIIβII +u,

then E
(
v
) �= 0 � E

(
β̂
) �= β .

i.e. β̂ is biased.
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Omission of relevant variables: consequences

Summary:
■ OLS estimator of coefficients is biased

(except if x′IxII = 0 ).
■ OLS estimator of intercept is always biased .
■ Estimator of Error variance is always biased .
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2.7b Multicollinearity
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Perfect Multicollinearity

Extreme case:
■ exact linear combination:

◆ ∑K
k=0 λkXkt = 0, λ �= 0, X0t = 1,

◆ ∃Xi | Xi = λ ∗
0 +∑K

k = 1
k �= i

λ ∗
k Xkt ,

◆ ∃Xi,Xj | Corr
(
Xi,Xj

)
= 1,

◆ ∃Xi | aux regres Xi on {Xk}K
k = 1
k �= i

� R2
i = 1.

■ Problem:
◆ rkX < K+1, (X isn’t of full rank)
◆ � det(X) = 0
◆ � �(X ′X)−1

◆ � β̂ ?
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Perfect Multicollinearity: example

■ Let X4t = 2X1t ∀t:

X4t = 0+2X1t +0 ·X2t +0 ·X3t +0 ·X5t + · · ·+0 ·XKt ,

■ no error? ⇒ aux regres X4 on {Xk}K
k = 1
k �= 4

� R2
4 = 1!!

■ Model specification:

Yt = β0 +β1X1t +β2X2t +β3X3t +β4X4t + · · ·+ut , t = 1,2 . . . ,T,

X4t = 2X1t ,

■ and substituting in model:

Yt = β0 +β1X1t +β2X2t +β3X3t +β4(2X1t)+ · · ·+ut ,

= β0 +(β1 +2β4︸ ︷︷ ︸
β �

1

)X1t +β2X2t +β3X3t + · · ·+ut

■ now we have one less parameter to estimate.
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Multicollinearity: counterexample

Yt = β0 +β �
1 X1t +β2X2t +β3X3t + · · ·+ut

■ Just K parameters remain to be estimated,
but β1 and β4 cannot be estimated separately:

◆ we can just estimate a linear combination of them:
β �

1 = β1 +2β4,
◆ i.e. combined effect of X1t and X4t on Yt !!

■ (Exercise: Try it yourself with X2t −3X3t = 10, ∀t.)

■ multicollinearity = linear relationships
but. . . what if relationship isn’t linear? e.g.:

Yt = β0 +β1X1t +β2X2
1t +ut

◆ X is of full column rank � no problem.
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Perfect Multicollinearity: consequences

■ some parameters cannot be estimated separately.
■ some estimates are just l.c. of parameters.

■ R2 is correct:
correctly picks up proportion of (variance of) Yt explained by the regression.

■ Predictions of Y are still valid.
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2.7c Imperfect Multicollinearity
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Imperfect Multicollinearity

■ Problem:

Yt = β0 +β1X1t +β2X2t +β3X3t +β4X4t + · · ·+ut , t = 1,2 . . . ,T,

X4t = 2X1t + vt ,

vt = gap between X4t and 2X1t ,
■ approximate relationship:

■ auxiliary regression X4t on rest� R2 ≈ 1 .
■ it’s a matter of degree (x′x not diagonal

� correlated variables)
■ Note: whenever perfect/imperfect is not specified

we mean imperfect mc.
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Multicollinearity: Symptoms

■ Typical symptom:
◆ high R2

(relevant group of regressors)
◆ but they appear to be not relevant individually

(inability to separate effects of regressors).
■ more formally:

Var
(
β̂ �
)

= σ2(x′x)−1 =
σ2

T
Var
(
X�
)−1

⇒ Var
(
β̂k
)

=
σ2

TVar
(
Xk
)
(1−R2

k)
,

■ so that, in the previous example X4t ≈ 2X1t :
◆ Corr

(
X4,X1

) ↑
◆ R2

4 and R2
1 �

◆ denominator ↓
◆ variances �
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Multicollinearity: Consequences

■ Some coefficients aren’t significant, even if their variables have an important effect
on dependent variable.

■ Nevertheless, Gauss-Markov
⇒ linear, unbiased and of minimum variance estimators,

then it isn’t possible to find a Better LUE.

■ R2 is correct:
correctly picks up proportion of (variance of) Yt

explained by the regression.
■ Predictions of Y are still valid.
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Multicollinearity: How to detect

■ Small changes in data
⇒ important changes in estimates

(they can even affect their signs).
■ Coefficient estimations

not individually significant. . .
■ . . . but they are jointly significant.

■ High coefficient of determination R2.
■ Auxiliary regressions among regressors

⇒ high R2
k .
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Multicollinearity: Some solutions

Multicollinearity is not an easy problem to solve.
Nevertheless, from

Var
(
β̂k
)

=
σ2

TVar
(
Xk
)
(1−R2

k)
,

it turns out that to lower the variance we may:
T ↑: Increase number of observations T .

Also, differences among regressors may increase.

Var
(
X
) ↑: Increase data dispersion; e.g. study about consumption function:

sample of families� all possible incomes.

Var
(
X
) ↑:Include additional information.

e.g. impose restrictions suggested by Ec. Th.

σ2 ↓: Add new relevant regressor not yet included.
It would also avoid serious bias problems.

R2
k ↓: Eliminate variables that may produce multicollinearity.

(Take care of omitting some relevant regressor though).
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2.8 The OLS Estimator under Restrictions.
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GLRM under linear restrictions (1)

■ previous chapter objectives:
◆ Econometric model (GLRM), characteristics and basic assumptions. . .
◆ but. . . no knowledge about model parameters.
◆ Least Squares Method for parameter estimation (OLS).
◆ Properties of resulting estimators.

■ present chapter objectives:
◆ a priori information about parameter values (or l.c.) . . .
◆ given by

■ economic theory,
■ other empirical work,
■ own experience, etc.

◆ Non-Restricted Model ⇒ Ordinary LS.
◆ Restricted Model ⇒ Restricted LS.
◆ Check, given the estimated model, if the information is compatible with available

data.
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GLRM under linear restrictions: examples

■ production function with constant returns to scale: βK +βL = 1 .
■ product demands as function of price: β = −1 (say).
■ in GLRM: let us assume that β2 = 0 and 2β3 = β4 −1 :

◆ Full model:

Yt = β0 +β1X1t + · · ·+βKtXKt +ut , with β2 = 0 and 2β3 +1 = β4;

◆ Alternative transformed model:
Yt = β0 +β1X1t +0X2t +β3X3t +(2β3 +1)X4t + · · ·+βKtXKt +ut

Yt−X4t = β0 +β1X1t +β3(X3t +2X4t)+ · · ·+βKXKt +ut

Y ∗
t = β0 +β1X1t +β3Zt + · · ·+βKXKt +ut

where Y ∗
t = Yt −X4t and Zt = X3t +2X4t .

◆ This transformed model:
■ can be estimated by OLS:

β̂0, β̂1, β̂3, β̂5, . . . , β̂K , together with β̂2 = 0 and β̂4 = 2β̂3 +1 .
■ has new endogenous variable Y ∗

t (not always so: e.g. if β2 = 0 alone) and
new explanatory variable Zt .
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GLRM under linear restrictions (2)

■ The “transformation” method is good for simple cases only.
■ In general, q (nonredundant) linear restrictions among parameters:

1
...

q

⎛⎜⎜⎝
� � � . . . �
...

� � � . . . �

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

β0

β1

β2

. . .

βK

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎝
�
...

�

⎞⎟⎟⎠
◆ for given matrix R and vector r,

R
(q×K+1)

β = r
(q×1)

◆ example of non-valid case (why?):

β3 = 0, 2β2 +3β4 = 1, β1 −2β4 = 3, 6β4 = 2−4β2 +β3
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GLRM under linear restrictions (2cont)

■ Write previous example β2 = 0 and 2β3 = β4 −1
(q = 2 restrictions) as in general formula:

(
0 0 1 0 0 0 . . . 0

0 0 0 2 −1 0 . . . 0

)

R
(2×K+1)

⎛⎜⎜⎜⎜⎜⎝
β0

β1

β2

. . .

βK

⎞⎟⎟⎟⎟⎟⎠
β

(K+1×1)

=

(
0

−1

)

r
(2×1)

.

■ In general, we write GLRM subject to q linear restrictions as:

Y
(T ×1)

= X
(T ×K+1)

β
(K+1×1)

+ u
(T ×1)

,

R
(q×K+1)

β
(K+1×1)

= r
(q×1)

.
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Estimation: restricted least squares (RLS).

■ Typical optimization exercise:

min
β

(u′u) where u = Y −Xβ ,

subject to Rβ = r.

■ Lagrangian:

L(β ,λ ) = u′u−2λ ′(Rβ − r)

min
β ,λ

L(β ,λ ).

■ First derivatives:

∂L(β ,λ )

∂β
= −2X ′u−2R ′λ ,

∂L(β ,λ )

∂λ
= −2(Rβ − r),
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Estimation: restricted least squares (RLS) (cont).

■ 1st.o.c. � normal equations:

X ′ ûR +R ′ λ̂ = 0, (4)

R β̂R = r, (5)

where β̂R and λ̂ are values of β ,λ that satisfy 1st.o.c. and residuals

ûR = Y −X β̂R. (6)

■ Solving for β̂R and λ̂ :

λ̂ = [R(X ′X)−1R ′]−1(r−Rβ̂ ),

β̂R = β̂ +(X ′X)−1R ′[R(X ′X)−1R ′]−1(r−Rβ̂ )

= β̂ +A(r−Rβ̂ ) = (I−AR) β̂ +Ar (7)

where A = (X ′X)−1R ′[R(X ′X)−1R ′]−1 .
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RLS estimation: characteristics

■ Expression (7): β̂R = β̂ +A(r−R β̂ )�

◆ the restricted estimate β̂R can be obtained as a function of the (not restricted)

ordinary estimate: β̂
◆ Rβ̂ � r ⇒ β̂R (restricted) � β̂ (not restricted) .

■ Normal equations (4): X ′ ûR +R ′ λ̂ = 0�
◆ satisfy the restrictions (obvious).
◆ X ′ûR �= 0 , i.e.:

■ sum of restricted residuals not zero,
■ restricted residuals not orthogonal to explanatory variables,
■ then, restricted residuals not orthogonal to fitted ŶR.

◆ TSS �= RSSR +ESSR

(compare with ordinary case and with transformed equation: R2 ??).
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Properties of the RLS estimator (1)

Expression (7) : β̂R = (I−AR) β̂ +Ar �

1. Linear: RLS estimator β̂R is l.c. of OLS estimator β̂ , which is linear , then β̂R is
linear also .

2. Bias: RLS estimator β̂R is

{
biased, if Rβ �= r ,

unbiased, if Rβ = r true
Demo:

E
(
β̂R
)

= (I−AR)E
(
β̂
)
+Ar = (I−AR)β +Ar = β +A(r−Rβ ).

3. Covariance Matrix: Var
(
β̂R
)

= (I−AR)Var
(
β̂
)

= σ2(I−AR)(X ′X)−1

Demo:

Var
(
β̂R
)

= (I−AR)Var
(
β̂
)
(I−AR) ′ = σ2 (I−AR)(X ′X)−1 (I−AR) ′

= σ2 [(X ′X)−1 +AR(X ′X)−1R ′A′ −AR(X ′X)−1 − (X ′X)−1 R ′A′]
where: AR(X ′X)−1 R ′A′ = (X ′X)−1R ′[R(X ′X)−1R ′]−1

R(X ′X)−1R ′A′

= (X ′X)−1R ′A′.
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Properties of the RLS estimator (2)

4. Smaller variance than OLS estimators,
even if restrictions aren’t true:

Demo:

Var
(
β̂R
)

= Var
(
β̂
)−ARVar

(
β̂
)

= Var
(
β̂
)− (psd matrix).

�

5. surprising result (apparently):
■ less “uncertainty” about parameters
� greater precision in estimation. . .

■ but. . . towards an erroneous result (biased)
if restriction isn’t true.
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Multicolinearity vs restrictions

Must clearly distinguish two different cases:
■ linear relationships among regressors

(i.e. multicollinearity):
e.g. X4t = 2X1t

⇒ missing information for individual estimates.
■ linear relationships among coefficients:

e.g. β4 = 2β1
⇒ extra information about parameters
� estimators with smaller variance.

■ respective models to estimate:

Yt = β0 +(β1 +2β4︸ ︷︷ ︸
β ∗

1

)X1t +β2X2t ++ · · ·+ut ,

⇒ β̂ ∗
1 but β̂1, β̂4 ?

Yt = β0 +β1(X1t +2X4t︸ ︷︷ ︸
X∗

1t

)+β2X2t ++ · · ·+ut ,

⇒ β̂1 and β̂4 = 2 β̂1


