INTRODUCTORY ECONOMETRICS

Lesson 2 c

Dr Javier Fernández

e:pfemaj@ehu.es

Dpt. of Econometrics \& Statistics

UPV-EHU
2.7a Omission of relevant variables.

$$
\text { ntroductory Economertics -p. } 861192
$$

Omission of relevant variables: consequences

Summary:

- OLS estimator of coefficients is biased
- OLS estimator of intercept is always biased.
- Estimator of Error variance is always biased.

Omission of relevant variables

- true relationship:
- estimated relationship:

$$
\begin{aligned}
& Y=X_{I} \beta_{I}+v \quad \text { where } \quad v=X_{I I} \beta_{I I}+u, \\
& \text { then } \mathrm{E}(v) \neq 0 \quad \rightsquigarrow \quad \mathrm{E}(\widehat{\beta}) \neq \beta .
\end{aligned}
$$

i.e. $\widehat{\beta}$ is biased.

Perfect Multicollinearity

Extreme case:

- exact linear combination:
- $\sum_{k=0}^{K} \lambda_{k} X_{k t}=0, \quad \lambda \neq 0, \quad X_{0 t}=1$,
- $\exists X_{i} \mid X_{i}=\lambda_{0}^{*}+\sum_{\substack{k=1 \\ k \neq i}}^{K} \lambda_{k}^{*} X_{k t}$,
- $\exists X_{i}, X_{j} \mid \operatorname{Corr}\left(X_{i}, X_{j}\right)=1$,
- $\exists X_{i} \mid$ aux regres X_{i} on $\left\{X_{k}\right\}_{\substack{k=1 \\ k \neq i}}^{K} \rightsquigarrow \mathrm{R}_{i}^{2}=1$.
- Problem:
- $\operatorname{rk} X<K+1,(X$ isn't of full rank)
- $\rightsquigarrow \quad \operatorname{det}(X)=0$
- $\rightsquigarrow \nexists\left(X^{\prime} X\right)^{-1}$
- \rightsquigarrow

Multicollinearity: counterexample

$$
Y_{t}=\beta_{0}+\beta_{1}^{\star} X_{1 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\cdots+u_{t}
$$

- Just K parameters remain to be estimated,
but β_{1} and β_{4} cannot be estimated separately:
- we can just estimate a linear combination of them:

$$
\beta_{1}^{\star}=\beta_{1}+2 \beta_{4},
$$

- i.e. combined effect of $X_{1 t}$ and $X_{4 t}$ on Y_{t} !!
- (Exercise: Try it yourself with $X_{2 t}-3 X_{3 t}=10, \quad \forall t$.)
- multicollinearity $=$ linear relationships
but. . . what if relationship isn't linear? e.g.

$$
Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+\beta_{2} X_{1 t}^{2}+u_{t}
$$

X is of full column rank
no problem.

Perfect Multicollinearity: example

- Let $X_{4 t}=2 X_{1 t} \quad \forall t:$

$$
X_{4 t}=0+2 X_{1 t}+0 \cdot X_{2 t}+0 \cdot X_{3 t}+0 \cdot X_{5 t}+\cdots+0 \cdot X_{K t},
$$

- no error? \Rightarrow aux regres X_{4} on $\left\{X_{k}\right\}_{\substack{k \neq 1 \\ k \neq 4}}^{K} \rightsquigarrow \mathrm{R}_{4}^{2}=1$!!
- Model specification:

$$
\begin{aligned}
Y_{t} & =\beta_{0}+\beta_{1} X_{1 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\beta_{4} X_{4 t}+\cdots+u_{t}, t=1,2 \ldots, T, \\
X_{4 t} & =2 X_{1 t},
\end{aligned}
$$

- and substituting in model:

$$
\begin{aligned}
Y_{t} & =\beta_{0}+\beta_{1} X_{1 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\beta_{4}\left(2 X_{1 t}\right)+\cdots+u_{t}, \\
& =\beta_{0}+(\underbrace{\beta_{1}+2 \beta_{4}}_{\beta_{1}^{\star}}) X_{1 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\cdots+u_{t}
\end{aligned}
$$

- now we have one less parameter to estimate.

Perfect Multicollinearity: consequences

- some parameters cannot be estimated separately.

■ some estimates are just l.c. of parameters.

- R^{2} is correct:
correctly picks up proportion of (variance of) Y_{t} explained by the regression
- Predictions of Y are still valid.

2.7c Imperfect Multicollinearity

htrocuciory Economertics -p. 944192

Multicollinearity: Symptoms

- Typical symptom:
- high R^{2}
- but they appear to be not relevant individually
(inability to separate effects of regressors).
- more formally:

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}^{\star}\right) & =\sigma^{2}\left(x^{\prime} x\right)^{-1}=\frac{\sigma^{2}}{T} \operatorname{Var}\left(X^{\star}\right)^{-1} \\
& \Rightarrow \quad \operatorname{Var}\left(\widehat{\beta}_{k}\right)=\frac{\sigma^{2}}{T \operatorname{Var}\left(X_{k}\right)\left(1-\mathrm{R}_{k}^{2}\right)},
\end{aligned}
$$

- so that, in the previous example $X_{4 t} \approx 2 X_{1 t}$:
- $\operatorname{Corr}\left(X_{4}, X_{1}\right) \uparrow$
- $\quad \mathrm{R}_{4}^{2}$ and $\mathrm{R}_{1}^{2} \uparrow \uparrow$
denominator \downarrow

Imperfect Multicollinearity

- Problem:
$Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\beta_{4} X_{4 t}+\cdots+u_{t}, t=1,2 \ldots, T$,
$X_{4 t}=2 X_{1 t}+v_{t}$,

$$
v_{t}=\text { gap between } X_{4 t} \text { and } 2 X_{1 t}
$$

- approximate relationship:
auxiliary regression $X_{4 t}$ on rest $\rightsquigarrow \mathrm{R}^{2} \approx 1$ it's a matter of degree ($x^{\prime} x$ not diagonal

$$
\rightsquigarrow \text { correlated variables) }
$$

- Note: whenever perfect/imperfect is not specified we mean imperfect mc.

ntroductory EConomenticis - p .95192

Multicollinearity: Consequences

- Some coefficients aren't significant, even if their variables have an important effect on dependent variable.
- Nevertheless, Gauss-Markov
\Rightarrow linear, unbiased and of minimum variance estimators,
then it isn't possible to find a Better LUE
- R^{2} is correct:
correctly picks up proportion of (variance of) Y_{t}
explained by the regression.
- Predictions of Y are still valid.

Multicollinearity: How to detect

- Small changes in data
\Rightarrow important changes in estimates
(they can even affect their signs).
- Coefficient estimations
not individually significant. .
- ... but they are jointly significant.
- High coefficient of determination R^{2}.
- Auxiliary regressions among regressors \Rightarrow high R_{k}^{2}.

Multicollinearity is not an easy problem to solve.
Nevertheless, from

$$
\operatorname{Var}\left(\widehat{\beta}_{k}\right)=\frac{\sigma^{2}}{T \operatorname{Var}\left(X_{k}\right)\left(1-\mathrm{R}_{k}^{2}\right)},
$$

it turns out that to lower the variance we may:
$\mathbf{T} \uparrow$: Increase number of observations T
Also, differences among regressors may increase
$\operatorname{Var}(\mathbf{X}) \uparrow$: Increase data dispersion; e.g. study about consumption function:
sample of families $k \rightarrow$ all possible incomes.
$\operatorname{Var}(\mathbf{X}) \uparrow$:Include additional information.
e.g. impose restrictions suggested by Ec. Th
$\sigma^{2} \downarrow$: Add new relevant regressor not yet included.
It would also avoid serious bias problems.
$\mathbf{R}_{\mathbf{k}}^{2} \downarrow$: Eliminate variables that may produce multicollinearity.
(Take care of omitting some relevant regressor though).

GLRM under linear restrictions (1)

- previous chapter objectives:
- Econometric model (GLRM), characteristics and basic assumptions...
- but. . . no knowledge about model parameters.
- Least Squares Method for parameter estimation (OLS).
- Properties of resulting estimators.
- present chapter objectives:
- a priori information about parameter values (or I.c.) ..
- given by
- economic theory,
- other empirical work,
- own experience, etc.
- Non-Restricted Model \Rightarrow Ordinary LS.
- Restricted Model \Rightarrow Restricted LS
- Check, given the estimated model, if the information is compatible with available data.
- production function with constant returns to scale: $\beta_{K}+\beta_{L}=1$
- product demands as function of price: $\beta=-1$ (say).
- in GLRM: let us assume that $\beta_{2}=0$ and $2 \beta_{3}=\beta_{4}-1$:
- Full model:

$$
Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K t} X_{K t}+u_{t}, \text { with } \beta_{2}=0 \text { and } 2 \beta_{3}+1=\beta_{4}
$$

- Alternative transformed model:

$$
Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+0 X_{2 t}+\beta_{3} X_{3 t}+\left(2 \beta_{3}+1\right) X_{4 t}+\cdots+\beta_{K t} X_{K t}+u_{t}
$$

$Y_{t}-X_{4 t}=\beta_{0}+\beta_{1} X_{1 t}+\beta_{3}\left(X_{3 t}+2 X_{4 t}\right)+\cdots+\beta_{K} X_{K t}+u_{t}$
$Y_{t}^{*}=\beta_{0}+\beta_{1} X_{1 t}+\beta_{3} Z_{t}+\cdots+\beta_{K} X_{K t}+u_{t}$
where $Y_{t}^{*}=Y_{t}-X_{4 t}$ and $Z_{t}=X_{3 t}+2 X_{4 t}$.

- This transformed model:
- can be estimated by OLS
$\widehat{\beta}_{0}, \widehat{\beta}_{1}, \widehat{\beta}_{3}, \widehat{\beta}_{5}, \ldots, \widehat{\beta}_{K}$, together with $\widehat{\beta}_{2}=0$ and $\widehat{\beta}_{4}=2 \widehat{\beta}_{3}+1$.
- has new endogenous variable Y_{t}^{*} (not always so: e.g. if $\beta_{2}=0$ alone) and new explanatory variable Z_{t}.

GLRM under linear restrictions (2cont)

- Write previous example $\beta_{2}=0$ and $2 \beta_{3}=\beta_{4}-1$
($q=2$ restrictions) as in general formula:

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
0 & 0 & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 2 & -1 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\ldots \\
\beta_{K}
\end{array}\right)=\binom{0}{-1} . \\
& \begin{array}{cc}
R & \beta_{K} \\
(2 \times K+1) & r \\
(2 \times 1)
\end{array} \\
& \underset{(K+1 \times 1)}{\beta}
\end{aligned}
$$

■ In general, we write GLRM subject to q linear restrictions as:

$$
\begin{gathered}
\underset{(T \times 1)}{Y}=\underset{(T \times K+1)}{X} \underset{(K+1 \times 1)}{\beta}+\underset{(T \times 1)}{u}, \\
\underset{(q \times K+1)}{R} \underset{(K+1 \times 1)}{\beta}=\underset{(q \times 1)}{r} .
\end{gathered}
$$

GLRM under linear restrictions (2)

- The "transformation" method is good for simple cases only.
- In general, q (nonredundant) linear restrictions among parameters:

$$
\begin{gathered}
1 \\
\vdots \\
q
\end{gathered}\left(\begin{array}{ccccc}
\diamond & \diamond & \diamond & \ldots & \diamond \\
\vdots & & & & \\
\diamond & \diamond & \diamond & \ldots & \diamond
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\ldots \\
\beta_{K}
\end{array}\right)=\left(\begin{array}{c}
\diamond \\
\vdots \\
\diamond
\end{array}\right)
$$

- for given matrix R and vector r

$$
\underset{(q \times K+1)}{R} \quad \beta=\underset{(q \times 1)}{r}
$$

- example of non-valid case (why?):

$$
\beta_{3}=0, \quad 2 \beta_{2}+3 \beta_{4}=1, \quad \beta_{1}-2 \beta_{4}=3, \quad 6 \beta_{4}=2-4 \beta_{2}+\beta_{3}
$$

Estimation: restricted least squares (RLS).

- Typical optimization exercise:

$$
\begin{aligned}
& \min _{\beta}\left(u^{\prime} u\right) \text { where } u=Y-X \beta, \\
& \text { subject to } R \beta=r .
\end{aligned}
$$

- Lagrangian:

$$
\begin{aligned}
L(\beta, \lambda)= & u^{\prime} u-2 \lambda^{\prime}(R \beta-r) \\
& \min _{\beta, \lambda} L(\beta, \lambda) .
\end{aligned}
$$

- First derivatives:

$$
\begin{aligned}
& \frac{\partial L(\beta, \lambda)}{\partial \beta}=-2 X^{\prime} u-2 R^{\prime} \lambda, \\
& \frac{\partial L(\beta, \lambda)}{\partial \lambda}=-2(R \beta-r),
\end{aligned}
$$

RLS estimation: characteristics

- 1st.o.c. \rightsquigarrow normal equations:

$$
\begin{align*}
X^{\prime} \widehat{u}_{R}+R^{\prime} \hat{\lambda} & =0, \tag{4}\\
R \widehat{\beta}_{R} & =r, \tag{5}
\end{align*}
$$

where $\widehat{\beta}_{R}$ and $\hat{\lambda}$ are values of β, λ that satisfy 1 st.o.c. and residuals

$$
\begin{equation*}
\widehat{u}_{R}=Y-X \widehat{\beta}_{R} \tag{6}
\end{equation*}
$$

- Solving for $\widehat{\beta}_{R}$ and $\hat{\lambda}$:

$$
\begin{align*}
\widehat{\lambda} & =\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R \widehat{\beta}), \\
\widehat{\beta}_{R} & =\widehat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R \widehat{\beta}) \\
& =\widehat{\beta}+A(r-R \widehat{\beta})=(I-A R) \widehat{\beta}+A r \tag{7}
\end{align*}
$$

where $A=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}$.

Properties of the RLS estimator (1)

Expression (7) : $\widehat{\beta}_{R}=(I-A R) \widehat{\beta}+A r \rightsquigarrow$

1. Linear: RLS estimator $\widehat{\beta}_{R}$ is I.c. of OLS estimator $\widehat{\beta}$, which is linear, then $\widehat{\beta}_{R}$ is linear also.
2. Bias: RLS estimator $\widehat{\beta}_{R}$ is $\begin{cases}\text { biased, } & \text { if } R \beta \neq r, \\ \text { unbiased, } & \text { if } R \beta=r \text { true }\end{cases}$ Demo:

$$
\mathrm{E}\left(\widehat{\beta}_{R}\right)=(I-A R) \mathrm{E}(\widehat{\beta})+A r=(I-A R) \beta+A r=\beta+A(r-R \beta) .
$$

3. Covariance Matrix: $\operatorname{Var}\left(\widehat{\beta}_{R}\right)=(I-A R) \operatorname{Var}(\widehat{\beta})=\sigma^{2}(I-A R)\left(X^{\prime} X\right)^{-1}$ Demo:

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{R}\right) & =(I-A R) \operatorname{Var}(\widehat{\beta})(I-A R)^{\prime}=\sigma^{2}(I-A R)\left(X^{\prime} X\right)^{-1}(I-A R)^{\prime} \\
& =\sigma^{2}\left[\left(X^{\prime} X\right)^{-1}+A R\left(X^{\prime} X\right)^{-1} R^{\prime} A^{\prime}-A R\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime} A^{\prime}\right]
\end{aligned}
$$

where: $A R\left(X^{\prime} X\right)^{-1} R^{\prime} A^{\prime}=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} R^{\prime} A^{\prime}$

$$
=\left(X^{\prime} X\right)^{-1} R^{\prime} A^{\prime} .
$$

Multicolinearity vs restrictions
Must clearly distinguish two different cases:

- linear relationships among regressors (i.e. multicollinearity):

$$
\text { e.g. } \quad X_{4 t}=2 X_{1 t}
$$

\Rightarrow missing information for individual estimates.

- linear relationships among coefficients:

$$
\text { e.g. } \quad \beta_{4}=2 \beta_{1}
$$

\Rightarrow extra information about parameters
\rightsquigarrow estimators with smaller variance.

- respective models to estimate:

$$
\begin{aligned}
Y_{t}=\beta_{0}+(\underbrace{\beta_{1}+2 \beta_{4}}_{\beta_{1}^{*}}) X_{1 t}+\beta_{2} X_{2 t}+ & +\cdots+u_{t} \\
& \Rightarrow \widehat{\beta}_{1}^{*} \quad \text { but } \widehat{\beta}_{1}, \widehat{\beta}_{4} ?
\end{aligned}
$$

$$
\begin{aligned}
Y_{t}=\beta_{0}+\beta_{1}(\underbrace{X_{1 t}+2 X_{4 t}}_{X_{1 t}^{*}})+\beta_{2} X_{2 t}+ & +\cdots+u_{t}, \\
& \Rightarrow \widehat{\beta}_{1} \quad \text { and } \quad \widehat{\beta}_{4}=2 \widehat{\beta}_{1}
\end{aligned}
$$

